

NPRG Citrus Greening Disease

Floyd, J. and C. Krass, 2006 **Stefano Costanzo**, CIPM-NCSU Raleigh, NC 2011

Introduction

- Citrus greening (HLB)
 - major disease for citrus and nursery industries
 - □ Spread by insect vectors and grafting
 - □ Present in Florida since 2005 (grows 71% of U.S. citrus-\$9.3 billion citrus industry)
 - increasing threat for California's citrus production
 - □ California grows 27%
 - concern to maintain access to export markets

Pathogens associated with Citrus Greening Disease

 \triangleright Class: α -Proteobacteria

Order: Rhizobiales

Family: Rhizobiaceae

- > 3 species associated with HLB:
 - 'Candidatus Liberibacter africanus' (Laf)
 - 'Candidatus Liberibacter americanus' (Lam)
 - 'Candidatus Liberibacter asiaticus' (Las)

- Common name:
 - Citrus Huanglongbing (HLB; yellow shoot disease)

Insect vectors of HLB

Class: Insecta

Order: Hemiptera

Family: Psyllidae

Diaphorina citri

Asian citrus psyllid (ACP)

□ Trioza erytreae

African citrus psyllid (AFP)

Asian citrus psyllid Diaphorina citri Kuwayama

African citrus psyllid Trioza erytreae (del Guercio)

Disease Cycle

Hosts

Rutaceous plant species

Citrus spp.

Murraya spp.

Murraya paniculata (Orange jasmine)

Severinia buxifolia (Orange boxwood)

Bergera spp.

Citrus plants infected with CG

- Shoot color yellow
- Leaves with characteristic blotchy mottling
- Normally green tissue turns yellow (chlorosis)
- Total foliage reduced
- Leaf tips dieback

Citrus fruits infected with CG

- Shape lopsided
- Size small
- Color remaining green with seeds aborted
- Taste sour
- Excessive and premature fruit drop

'Ca. L.' spp. World Distribution

U.S. distribution of CG

2005 south Miami-Dade County, Florida 2008 Louisiana 2009 South Carolina

ACP in California

Control

- □ reduction of the Asian citrus psyllid populations
- □ visual identification and prompt removal of infected trees
- production of propagation material in insect-proof facilities

CG disease:

- Remove and destroy infected trees
- Quarantine program

Psillid vectors:

- Chemical and biological control
 - Tamarixia dryi (from South Africa) -» ACP
 - ▶ Tamarixia radiata (from India) -» AFP
 - ▶ [Diaphorencyrtus aligarhensis]
 - □ Olla v-nigrum (Ashy Gray Lady Beetle)
 - ☐ Harmonia axyridis (Multicolored Asian Lady Beetle)
 - □ Isaria fumosorosea (Sordariomycetes: Hypocreales)
- Removal of preferred alternative hosts
 - Murraya paniculata (orange jasmine)

Research needs

- Breeding/ Engineering citrus spp. for HLB resistance
 - □ Clementine Mandarin Genome
 - □ Sweet Orange Genome
- Pathogen detection and control measures
 - 'Candidatus Liberibacter asiaticus' str. Psy62 (complete; 1.23 Mb)
 - □ 'Candidatus Liberibacter americanus' (close to completion)
- Vector control measures
 - ☐ Asian citrus psyllid Genome (Psyllid Genome Consortium)
 - ~ 20,000ESTs

Recent Updates & Conclusions

- New hosts:
 - Fabaceae, Archidendron

 Pithecellobium lucidum (China)
- Pesticide resistance
- Nutritional Programs
- New detection techniques
- Control strategies (RNAi; Phages)

- NPRG should be updated regularly:
 - Host plants
 - Advances in detection techniques for pathogen
 - Distribution of pathogens and vectors
 - Surveillance methodology
 - Improvements in control methods

Thank you!