Plant Pathogen Forensics:

For a Balanced National Plant Disease Recovery System

Jacqueline Fletcher
Oklahoma State University
Director, National Institute for Microbial Forensics & Food and Agricultural Biosecurity

NPDRN Review Workshop St. Louis, MO April 2007

National and international crop biosecurity issues

- A strong National security plan should include:
 - Early detection and diagnostic systems
 - Epidemiological models for predicting pathogen spread
 - Reasonable yet effective strategies and policies
 - Distributed physical and administrative infrastructure
 - National response coordination plan
 - Validated microbial forensic technology and investigative capability

Is this something new?

- The usual goals of an applied plant pathologist:
 - Identify the pathogen as needed for management
 - Respond quickly to manage a disease outbreak
 - Recommend/apply optimal control strategies
- New issue: Has a crime occurred?
 - Discerning natural vs. intentional outbreaks

Goals of a microbial forensic investigator:

- Collect very specific forensic evidence via tests that are
 - Standardized and validated
 - Very high confidence levels
 - Sufficiently robust to withstand rigorous adversarial review in a court of law
- Attribution
 - Determine source of agent
 - Identify the perpetrators
 - Prosecute the criminal
- Deterrence of future attempts
- Applying our science to a new national and international need

"A highly proficient and science-based national forensic capability will require significant new initiatives."

-FBI Scientific Working Group on Microbial Genetics and Forensics (SWGMGF)

"It is now time for the U.S. – and perhaps at some level the world community – to establish an integrated, comprehensive forensic capability to effectively attribute biological weapons..."

R. Murch, Institute for Defense Analysis, 2003

Plant Pathogen Forensics Working Group

- Solicited and sponsored by IDA
- Charged to
 - Examine current capabilities in plant pathogen forensics
 - Identify gaps and needs
 - Make recommendations for future initiatives

- Workshop March 2004
- White paper for IDA
- APS Symposium August 2004
- Review article: MMBR Vol. 70, p. 450-471
- Representation on the FBI SWGMGF

Addressed FBI – SWGMGF's call for new knowledge and developments in:

- a) comparison, standardization and validation of microbial typing methods
- b) establishing standard procedures for sampling methods, sample size and sample quality
- c) understanding pathogen genome dynamics, phylogenetics and systematics
- d) evaluating the influence of mutation, evolution and environment on microbial forensic analysis

AND in:

- e) exploring the influence of ecology and background clutter on the forensic analysis of microbes
- f) understanding how post-translational modifications affect forensic typing and discrimination
- g) development of standard discrimination and match criteria for forensic analyses and attribution
- h) establishment of an integrated bioinformatics and data analysis system

1. What knowledge and technologies do we already have that can be brought to this new application?

- Bring together elements from established and emerging fields of science:
 - Classical microbiology
 - Microbial genomics
 - Phylogenetics
 - Epidemiology
 - Microbial ecology
 - Bioinformatics
 - Human forensics
 - Plant pathology

2. What gaps and needs remain?

- Two major types of gaps
 - Aspects related to "typical" plant pathology already doing or planning to do
 - Aspects related specifically to forensic science
 - Integration of these two with each other and with other fields

3. How can we fill those gaps and meet those needs?

- New research initiatives
- Targeted funding programs
- Plant Pathogen Forensics Working Group
 - APS affiliated
- Linkages with national/international forensics groups
 - FBI Scientific Working Group on Microbial Genetics and Forensics (SWGMGF)
 - DHS National Bioforensic Analysis Center (part of NBACC)
 - □ Others USDA, CIA, other U.S. government agencies, other scientific societies such as ASM, etc.
- Develop a coordination mechanism

Issues for Plant Pathogen Forensics

- •100s of plant species, each with many pathogens
- Some diagnostics still based on timeconsuming tests (e.g., reactions on host "differentials", mating types)
- •Culture collections scattered, inadequate & often lost with retirements
- Plant pathogen entries in key databases (NCBI, GeneBank, BIOLOG, FAME) very limited
- Lack of effective molecular detection tags: primers, probes and antibodies
- Lack of information on pathogen biology

More Issues for Plant Pathogen Forensics

- Diagnostic and detection tools rarely standardized, validated
- Relative effectiveness of different technologies unknown in most cases
- -"Best" test generally depends on the tools and databases available for that taxon and closely related taxa
- The "species" concept is becoming cloudy
- FUNDING FOR PLANT DISEASE RESEARCH IS COMPARATIVELY MINISCULE!

Corn stunt

National Institute for Microbial Forensics & Food and Agricultural Biosecurity

- Established Fall 2007
 - Oklahoma State University
- Current participants
 - OSU-Stillwater
 - OSU-Center for Health Sciences, Tulsa
- Areas of emphasis
 - Research & technology development
 - Extension & outreach
 - Education & training

NIMFFAB Objectives

- Provide strategic planning, vision and prioritization of needs and resources related to plant and food-related microbial forensics and agricultural biosecurity
- Conduct focused and outcome-oriented research and education in priority areas of microbial forensics
- Establish a coalition of national and Oklahoma investigators conducting research on crop and food biosecurity and forensics

NIMFFAB objectives, continued

- Serve as a focal point for communication, cooperation, funding
- Deliver outputs to end users in the security community
- Develop outreach opportunities for first detectors, Extension educators, producers and the public
- Communicate and work in parallel, locally and nationally, with parallel programs related to animal and human pathogens

WORKSHOP Plant Pathogen Forensics: Filling the Gaps

Planning and attendance:

- FBI Forensics Laboratory
- DHS NBFAC
- CIA Bioterrorism Unit
- USDA: APHIS, ARS, CSREES, NPDN, NPDRS
- National Laboratories: Los Alamos
- Academic community OSU & nationwide
- Oklahoma agricultural security community

Workshop Objectives

- Bring plant pathology, security and law enforcement communities together
- Develop specific targeted initiatives to
 - formulate **guidelines for decision-making** by security and law enforcement *Decision Trees*
 - identify and prioritize most critical needs
 - identify research gaps and develop strategies to address
 - seek targeted funding programs

Decision Trees

- Tree branches:
 - Is a plant disease natural or human-incited?
 - What evidence is needed?
 - How to collect, transport, store?
 - What tests are appropriate?
 - How to do them?
 - How to interpret them?

Scenario Based Planning

- Wheat streak mosaic virus vector-borne virus of grain crops
- Ralstonia solanacearum R3B2 genetically engineered select agent in potatoes
- Phytophthora ramorum threat to forests & woody landscape plants
- Fusarium oxysporum genetically modified mycotoxin-producing fungus in wheat
- Meloidogyne incognito root-knot nematode threat to tomato production

Workshop Outcomes

- Five scenario reports
- Identify features common to all
- Identify situation-unique features
- Develop a draft Decision Tree
- Planning for a field-based training exercise targeted at law enforcement personnel
 - OSU, FBI, CIA, DHS, APHIS, NPDN, other?
- Develop a strategic plan for plant pathogen forensics

Conclusions

- •Capability in microbial forensics must be part of a balanced plant biosecurity preparedness plan
 - Part of the NPDRS?
- Microbial forensics is a new sub-discipline of plant pathology to which we can bring many tools and resources – but more are needed
- Building capacity will require dedicated support and collaboration from law enforcement and national protection programs
 - The National Institute for Microbial Forensics & Food and Agricultural Biosecurity at OSU is just a start
- It also will require targeted funding and resources

